skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pappas, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. UAVs (unmanned aerial vehicles) or drones are promising instruments for video-based surveillance. Various applications of aerial surveillance use object detection programs to detect target objects. In such applications, three parameters influence a drone deployment strategy: the area covered by the drone, the latency of target (object) detection, and the quality of the detection output by the object detector. Previous works have focused on improving Pareto optimality along the area-latency frontier or the area-quality frontier, but not on the combined area-latency-quality frontier, because of which these solutions are sub-optimal for drone-based surveillance. We explore a three way tradeoff between area, latency, and quality in the context of autonomous aerial surveillance of targets in an area using drones with cameras and an object detection program. We propose Vega, a drone deployment framework that captures these tradeoffs to deploy drones efficiently. We make three contributions with Vega. First, we characterize the ability of the state-of-the-art mobile object detector, EfficientDet [CPVR '20], to detect objects from varying drone altitudes using confidence and IoU curves vs. drone altitude. Second, based on these characteristics of the detector, we propose a set of two algorithmic primitives for drone-based maneuvers, namely DroneZoom and DroneCycle. Using these two primitives, we obtain a more optimal Pareto frontier between our three target parameters - coverage area, detection latency, and detection quality for a single drone system. Third, we scale out our findings to a swarm deployment using higher-order Voronoi tessellations, where we control the swarm's spatial density using the Voronoi order to further lower the detection latency while maintaining detection quality. 
    more » « less